bulletin of the chemical society of Japan, vol. 46, 2595—2596 (1973)

The Crystal Structure of Rb(TCNQ)-II

Ichimin Shirotani and Hayao Kobayashi*

The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106
*Department of Chemistry, Faculty of Science, Toho University, Narashino, Chiba 275
(Received January 24, 1973)

X-Ray studies of several TCNQ salts have revealed that the planar TCNQ molecules are stacked face-to-face to form columns in most of these crystal structures. The infinite columns hitherto reported consist of tetradic, triadic, diadic, and monadic units of TCNQ molecules. 1-6)

Rb(TCNQ) is polymorphic at room temperature.^{7,8)} The crystals of Rb(TCNQ)-I are monoclinic. The TCNQ⁻ radical ions form columns contructed from diadic units of TCNQ⁻. The crystal structure of Rb(TCNQ)-II will be reported in this paper.

Experimental

The dark purple crystal of Rb(TCNQ)-II was kindly supplied by Sakai. The cell dimensions were determined from Weissenberg photographs. The shape of the crystal used for the collection of the intensity data was approximate parallelepiped, with a maximum dimension of 0.3 mm. Equinclination Weissenberg photographs were taken around the c axis up to the third layer with $\text{Cu}K\alpha$ radiation ($\lambda=1.5418$ Å); the multiple film technique was used. In all, 811 reflections were observed. The intensities were estimated visually by comparison with a standard film strip and were converted to |F(hkl)| by applying the usual Lorentz, polarization, and shape corrections.

The crystal data of Rb(TCNQ)-II are: Rb+(C₁₂H₄N₄)-, F.W. 290, triclinic, $a=9.914\pm0.001$, $b=7.196\pm0.003$, $c=3.390\pm0.002$ Å, $\alpha=92.70\pm0.10$, $\beta=86.22\pm0.11$, $\gamma=97.73\pm0.07$, v=275.20ų, $D_x=1.757$, Z=1, space group P $\bar{1}$, F(000)=137

Determination of the Structure and Discussion

The space group $P\overline{1}$ was assumed tentatively and was then indeed verified at a later stage of the refinement. The trial structure was readily deduced from the three-dimensional Patterson synthesis. The atomic parameters were refined anisotropically by the block-diagonal least-squares method. The calculated po-

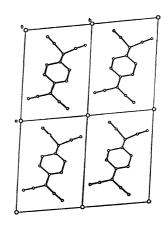


Fig. 1a. Projection of the structure along the b axis.

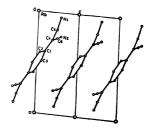


Fig. 1b. Projection of the structure along the c axis.

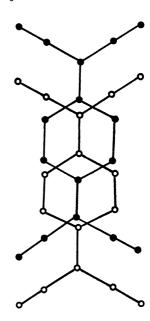


Fig. 2. Nearest neighbour overlap of TCNQ-.

sitions of all the hydrogen atoms were included. The weighting scheme adopted was; w=1 for F>3.5 and w=0.2 for F<3.5. The final R value was 0.130.

The final positional and thermal prameters are given

C. J. Fritchie and P. Arthur, Acta Crystallogr., 21, 139 (1966)
 C. J. Fritchie, ibid., 20, 892 (1966).

²⁾ H. Kobayashi, Y. Ohashi, F. Marumo, and Y. Saito, *ibid.*, **B26**, 459 (1970); H. Kobayashi, F. Marumo, and Y. Saito, *ibid.*, **B27**, 374 (1971).

³⁾ T. Sandaresan and S. C. Wallwork, *ibid.*, **B28**, 491, 1163, 2474, 3065 (1972).

⁴⁾ A. T. McPhail, G. M. Semeniuk, and D. B. Chesnut, *J. Chem. Soc.*, A, **1971**, 2174.

⁵⁾ A. W. Hanson, Acta Crystallogr., B24, 768 (1968).

⁶⁾ P. Goldstein, K. Seff, and K. N. Trueblood, *ibid.*, **B24**, 778 (1968).

⁷⁾ N. Sakai, I. Shirotani, and S. Minomura, This Bulletin, 45, 3314, 3321 (1972).

⁸⁾ J. G. Vegter, T. Hiba, and J. Kommander, *Chem. Phys. Lett.*, **3**, 427 (1969).

TABLE 1.	Тне	FINAL	ATOMIC	PARAMETERS	AND	THEIR	ESTIMATED	STANDARD	DEVIATIONS
Temperature factor = $\exp[-(h^2B_{11} + k^2B_{22} + l^2B_{33} + 2hkB_{12} + 2hlB_{13} + 2klB_{23})] \times 10^4$									

ATOM	X	Y	Z	B ₁₁	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Rb	0	0	0	80 4	124 6	260 21	33 4	72 6	36 8
N(1)	$\begin{array}{c} 905 \\ 21 \end{array}$	3108 25	5373 50	116 28	$\begin{array}{c} 123 \\ 43 \end{array}$	677 178	31 29	113 55	$-38 \\ 66$
N(2)	$\begin{array}{c} 2410 \\ 21 \end{array}$	9136 27	5693 58	95 27	150 45	1014 213	47 29	123 60	$-18 \\ 76$
C(1)	3880 23	5349 27	1898 55	84 27	65 40	497 178	23 27	121 54	$-26 \\ 63$
C(2)	3986 23	3509 31	763 62	66 29	150 53	722 214	38 32	101 60	$-14 \\ 80$
C (3)	4883 25	6887 31	1053 64	98 32	120 51	724 212	261 33	147 65	12 80
C(4)	2746 24	5814 28	3680 61	93 30	71 43	695 206	23 29	107 61	28 72
C(5)	1732 25	4331 31	4724 66	105 33	114 52	871 241	33 34	130 71	-12784
C(6)	2562 22	7614 32	4837 62	60 28	165 56	681 209	31 31	35 59	1 81

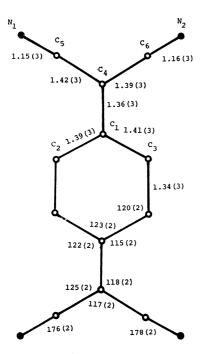


Fig. 3. Bond lengths (Å) and angles (°) with their standard deviations (in parenthses).

in Table 1. The observed and calculated structure factors are given in Table 2.9) The structure within one unit cell is shown in Figs. la and 1b as viewed along the c axis and the b axis respectively. TCNQ-ions are stacked in a plane-to-plane manner and form columns of monadic units. This columnar structure is very similar to those found in the crystals of N-methylphenazinium(TCNQ).1) The inter-planar spacing of TCNQ is 3.43 Å. The mode of overlapping is illustrated in Fig. 2. This type of overlapping has been observed in various TCNQ salts.1-6) The bond lengths and angles of the TCNQ- are shown in

Table 3. The pysical properties of both Rb(TCNQ)

	Rb(TCNQ)-II	Rb(TCNQ)-I		
Electrical resistivity Ω cm (R. T.)	102	105		
Activation energy eV	0.16~0.19	0.53~0.41 below the transition point 0.37~0.28 above the transition point		
Transition temperature K	230	374		
The electrical anomalies at high pressure Kbar	unobservable	1, 3.5		
Absorption peaks cm ⁻¹	6250 16250, 26380	8500 15750, 26500		

Fig. 3. These values show that the TCNQ⁻ ion has a quinoid character. It is known that crystals of Rb-(TCNQ)-I have monoclinic symmetry and that TCNQ⁻ ions are stacked face-to-face to form columns of diadic units of TCNQ⁻. Within a column, two different intermolecular spacings, 3.159 and 3.484 Å, appear alternately.¹⁰⁾

The physical properties of both Rb(TCNQ) substances are summarized in Table 3.7) The resistivity of Rb(TCNQ)-I is about 10³ times that of Rb(TCNQ)-II. The near-infrared absorption band of salt-II, which is due to the inter-radical charge transfer in the crystal, shifted toward a longer length than that of salt-I. The difference in the physical properties may arise from the difference in the columnar structures.

The authors are grateful to professor Saito for his interest in this study and his kind advice. They are also indebted to Dr. Sakai for kindly supplying the crystals of Rb(TCNQ).

⁹⁾ Table 2 is kept by the office of the Chemical Society of Japan (Document No. 7313).

¹⁰⁾ A. Hoekstra, T. Sopieder, and A. Vos, Acta Crystallogr., **B28**, 14 (1972).